
C2O: A Tool for Guided Decision-Making

Alexander Nöhrer
Institute for Systems Engineering and

Automation
Johannes Kepler University Linz, Austria

alexander.noehrer@jku.at

Alexander Egyed
Institute for Systems Engineering and

Automation
Johannes Kepler University Linz, Austria

alexander.egyed@jku.at

ABSTRACT
Decision models are widely used in software engineering to
describe and restrict decision-making (e.g., deriving a prod-
uct from a product-line). Since decisions are typically inter-
dependent, conflicts during decision-making are inevitably
reached when invalid combinations of decisions are made.
Unfortunately, the current state-of-the-art provides little sup-
port for dealing with such conflicts. On the one hand, some
conflicts can be avoided by providing more freedom in which
order decisions are made (i.e., most important decisions first).
On the other hand, conflicts are unavoidable at times and
living with conflicts may be preferable over forcing the user
to fix them right away – particularly, because fixing conflicts
becomes easier the more is known about an user’s intentions.
This paper introduces the C2O (Configurator 2.0) tool for
guided decision-making. The tool allows the user to answer
questions in an arbitrary order – with and without the pres-
ence of conflicts. While giving users those freedoms, it still
supports and guides them by 1) rearranging the order of
questions according to their potential to minimize user in-
put, 2) providing guidance to avoid follow-on conflicts, and
3) supporting users in fixing conflicts at a later time.

Categories and Subject Descriptors: I.2.8 Problem Solv-
ing, Control Methods, and Search: Heuristic methods

General Terms: Human Factors, Verification.

1. INTRODUCTION
In software engineering, many tasks exist that involve

making decisions [3, 5]. This paper introduces a tool for
guided decision-making – focusing on the product-line do-
main. From a decision oriented view, a decision model con-
sists of questions and choices for these questions, which are
typically interrelated. For example, an online car configu-
rator is such a decision model where the car manufacturer
offers a predefined set of car types with predefined features.
Relations typically impose or restrict choices. For example,
choosing a convertible makes asking about roof racks irrele-
vant for obvious reasons. Not all relations are that obvious.

During decision-making, decisions may thus lead to con-
flicts if they violate such relations. It is quite easy to de-
tect such conflicts (through SAT-Solvers [2] or consistency
checkers [4]). It is also quite easy to prevent conflicts by
disabling choices that would lead to conflicts. Doing so is

published at
ASE’10, September 20–24, 2010, Antwerp, Belgium. 

state-of-the-practice, however this is problematic whenever
the decision maker reaches a point where a desired choice is
no longer available – a dead end. Typically, tool support to
avoid and deal with dead ends is rarely existent and when
a dead end is reached, decision makers often have no choice
but to backtrack and start over. We identified the following
main reasons for dead ends:

1. Decision makers are required to answer questions first
that may not be important to them. This unnecessar-
ily restricts the answers to follow-on questions.

2. Decision makers are unaware of the consequences of
their choices because they do not understand all rela-
tions, which can result in favored choices for unaswered
questions being excluded.

The first issue stems from the fact that a predefined order for
answering questions restricts the user’s freedom in answering
questions [7]. This issue is largely ignored in literature but
of essential importance because users’ needs vary and users
prefer to answer questions first that are important to them
or easy to answer – before being led through the remaining
questions. Since the user may not know how to answer the
remaining questions first, such that favored choices are not
eliminated, such a freedom could help avoid possible dead
ends significantly. For example, most online car configura-
tors “force” the user to first select the type of car before se-
lecting other properties (e.g., engine, color). However, what
if the user cares more about mileage than make? Any pre-
wired solution, even if optimal, that deviates from the user’s
preferred way of answering the questions then forces the user
to exhaustively explore all choices to find the ones that sat-
isfy the desired properties. While it would be simple to allow
users to answer questions arbitrarily, there are good reasons
to restrict the order. A pre-defined order can be optimized
to avoid unnecessary questions to be answered. The second
issue is a matter of visualization which some tools already
address.

Naturally, even by providing the freedom to answer ques-
tions arbitrarily, doing so may not prevent dead ends alto-
gether. Existing tool support for decision-making does not
allow conflicts and as such it forces the user to backtrack
decisions to resolve the dead end before continuing. Un-
fortunately, such backtracking is quite complex and users
may prefer to continue making decisions, even accepting the
resulting conflicts (i.e., tolerating inconsistencies [1]). The
freedom to select any choice during decision-making, even a
conflicting one, is a legitimate way forward without forcing



Figure 1: Overview of the system’s internals

the user to deal with a problem that may not be important
from a user’s perspective at that time.

This paper introduces a product configurator tool that
allows users to answer questions and introduce conflicts ar-
bitrarily – but provides the necessary capabilities to support
the user during decision-making: Firstly users can make de-
cisions in any arbitrary order. However guidance is still
provided: the questions are presented in an optimal (with
regard to minimizing user input) order, which the user can
choose to ignore at any time. Secondly consequences of de-
cisions can be visualized beforehand if the user wishes. And
finally our tool allows the configuration process at a dead
end to be continued by entering a conflicting state. How-
ever users will be guided through the remaining questions
to avoid follow-on conflicts and any additional answers pro-
vided will be used later to help resolve the conflict. Our tool
incorporates strategies described elsewhere [6]. The follow-
ing summarizes these capabilities.

2. TOOL AND ARCHITECTURE
The C2O tool, a prototype, currently puts emphasis on

the necessary reasoning behind guided decision-making. Fig-
ure 1 depicts a basic overview of the system’s internals and
interfaces to the users (creator and decision maker). Cur-
rently only the interaction between the decision maker and
the system has a graphical user interface, defining questions,
choices and relations is done programmatically.

We use a SAT-Solver as our main reasoning engine. Fea-
ture Models, Product-lines or general Constraint Satisfac-
tion Problems (CSP) are transformed into Conjunctive Nor-
mal Form (CNF) and fed into the SAT-Solver. The SAT-
Solver then serves as an oracle to answer questions about
the impact of decisions. Before the decision-making process
starts, the initial optimal order of questions is determined
with the help of a heuristic . During the decision-making
process this order is reevaluated after every decision and
the results are communicated to the user. For the creators
of decision models this implies savings in not having to pre-
define the optimal order which is exponentially complex. For
the decision maker this implies more freedom in answering
questions while still benefiting from optimizations.

In addition we incorporated our approach of tolerating
conflicts [6] into the tool. It visualizes conflicting choices,
provides explanations on conflicts, and allows conflicting de-

Figure 2: Excerpt of using C2O to configure a car

cisions. Most importantly of all, it lets the user proceed in
the presence of conflicts, even encourages the continuation
to gather more information about the source of the conflict
(defect), to resolve it later.

Both these technologies have been excessively evaluated.
We have demonstrated that our approach for determining
an ideal order is 92-100% optimal and automatically reduces
up to a third of all questions compared to a random selec-
tion. We also found that at the time a conflict is discovered,
it is around 29-71% likely that there is more than one op-
tion for fixing it. Yet, the longer conflicts are tolerated the
less complex becomes their fixing (i.e., because decisions not
only restrict choices for answering future questions but also
choices for fixing conflicts).

Figure 2 shows an excerpt of our tool that shows some
questions, their sizes are directly related to their potential
for minimizing user input if answered. User decisions are in-
dicated with a black background (they are also the smallest
ones since they already have been answered), conflicting user
decisions have a gray background, and unanswered questions
have a white background.

Acknowledgments
The authors would like to thank Thomas Schartmüller for
his work on the GUI. This research was funded by the Aus-
trian FWF under agreement P21321-N15.

3. REFERENCES
[1] R. Balzer. Tolerating Inconsistency. In ICSE, pages 158–165,

1991.

[2] M. Davis, G. Logemann, and D. W. Loveland. A machine
program for theorem-proving. Commun. ACM, 5(7):394–397,
1962.

[3] D. Dhungana, R. Rabiser, P. Grünbacher, K. Lehner, and
C. Federspiel. DOPLER: An Adaptable Tool Suite for Product
Line Engineering. In SPLC (2), pages 151–152. Kindai Kagaku
Sha Co. Ltd., Tokyo, Japan, 2007.

[4] A. Egyed. Instant consistency checking for the UML. In L. J.
Osterweil, H. D. Rombach, and M. L. Soffa, editors, ICSE,
pages 381–390. ACM, 2006.

[5] J. H. Hayes and A. Dekhtyar. Humans in the traceability loop:
can’t live with ’em, can’t live without ’em. In TEFSE ’05:
Proceedings of the 3rd international workshop on Traceability
in emerging forms of software engineering, pages 20–23, New
York, NY, USA, 2005. ACM.

[6] A. Nöhrer and A. Egyed. Conflict Resolution Strategies during
Product Configuration. In D. Benavides, D. Batory, and
P. Grünbacher, editors, VaMoS, volume 37 of ICB Research
Report, pages 107–114. Universität Duisburg-Essen, 2010.

[7] C. van Nimwegen, D. D. Burgos, H. van Oostendorp, and
H. Schijf. The paradox of the assisted user: guidance can be
counterproductive. In R. E. Grinter, T. Rodden, P. M. Aoki,
E. Cutrell, R. Jeffries, and G. M. Olson, editors, CHI, pages
917–926. ACM, 2006.


